Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 971
Filtrar
1.
Int. j. morphol ; 41(6): 1816-1823, dic. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528777

RESUMO

SUMMARY: To evaluate the anti-cancer effects of yeast extract on resistant cells, autophagy and necroptosis were investigated in 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Further underlying characteristics on drug resistance were evaluated, focused on ERK-RSK-ABCG2 linkage. SNU-C5 and 5-FU resistant SNU-C5 (SNU-C5/5-FUR) colorectal cancer cells were adopted for cell viability assay and Western blotting to examine the anti-cancer effects of yeast extract. Yeast extract induced autophagy in SNU-C5 cells with increased Atg7, Atg12-5 complex, Atg16L1, and LC3 activation (LC3-II/LC3-I), but little effects in SNU-C5/5-FUR cells with increased Atg12-5 complex and Atg16L1. Both colorectal cancer cells did not show necroptosis after yeast extract treatment. Based on increased ABCG2 and RSK expression after yeast extract treatment, drug resistance mechanisms were further evaluated. As compared to wild type, SNU-C5/5-FUR cells showed more ABCG2 expression, less RSK expression, and less phosphorylation of ERK. ABCG2 inhibitor, Ko143, treatment induces following changes: 1) more sensitivity at 500 mM 5-FU, 2) augmented proliferation, and 3) less phosphorylation of ERK. These results suggest that protective autophagy in SNU-C5/5-FUR cells with increased ABCG2 expression might be candidate mechanisms for drug resistance. As the ERK responses were different from each stimulus, the feasible mechanisms among ERK-RSK-ABCG2 should be further investigated in 5-FU-resistant CRC cells.


Para evaluar los efectos anticancerígenos del extracto de levadura en células resistentes, se investigaron la autofagia y la necroptosis en células de cáncer colorrectal resistentes al 5-fluorouracilo (5-FU). Además se evaluaron otras características subyacentes de la resistencia a los medicamentos centrándose en el enlace ERK-RSK-ABCG2. Se usaron células de cáncer colorrectal SNU-C5 (SNU-C5/5-FUR) resistentes a SNU-C5 y 5- FU para el ensayo de viabilidad celular y la transferencia Western para examinar los efectos anticancerígenos del extracto de levadura. El extracto de levadura indujo autofagia en células SNU-C5 con mayor activación de Atg7, complejo Atg12-5, Atg16L1 y LC3 (LC3-II/LC3-I), pero pocos efectos en células SNU-C5/5-FUR con aumento de Atg12-5 complejo y Atg16L1. Ambas células de cáncer colorrectal no mostraron necroptosis después del tratamiento con extracto de levadura. Se evaluaron los mecanismos de resistencia a los medicamentos. en base al aumento de la expresión de ABCG2 y RSK después del tratamiento con extracto de levadura.En comparación con las de tipo salvaje, las células SNU-C5/5-FUR mostraron más expresión de ABCG2, menos expresión de RSK y menos fosforilación de ERK. El tratamiento con inhibidor de ABCG2, Ko143, induce los siguientes cambios: 1) más sensibilidad a 5-FU 500 mM, 2) proliferación aumentada y 3) menos fosforilación de ERK. Estos resultados sugieren que la autofagia protectora en células SNU-C5/5-FUR con mayor expresión de ABCG2 podría ser un mecanismo candidato para la resistencia a los medicamentos. Como las respuestas de ERK fueron diferentes de cada estímulo, los mecanismos factibles entre ERK-RSK- ABCG2 deberían investigarse más a fondo en células CCR resistentes a 5-FU.


Assuntos
Autofagia , Extratos Vegetais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/farmacologia , Leveduras , Células Tumorais Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Western Blotting , Resistencia a Medicamentos Antineoplásicos , Proteínas Quinases S6 Ribossômicas 90-kDa , Eletroforese , Fluoruracila , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Necroptose
2.
Chinese Journal of Oncology ; (12): 499-507, 2023.
Artigo em Chinês | WPRIM | ID: wpr-984749

RESUMO

Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.


Assuntos
Animais , Feminino , Camundongos , Humanos , Azepinas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro , Proteína Supressora de Tumor p53/genética , Resistencia a Medicamentos Antineoplásicos
3.
Journal of Zhejiang University. Science. B ; (12): 207-220, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971481

RESUMO

A series of chemotherapeutic drugs that induce DNA damage, such as cisplatin (DDP), are standard clinical treatments for ovarian cancer, testicular cancer, and other diseases that lack effective targeted drug therapy. Drug resistance is one of the main factors limiting their application. Sensitizers can overcome the drug resistance of tumor cells, thereby enhancing the antitumor activity of chemotherapeutic drugs. In this study, we aimed to identify marketable drugs that could be potential chemotherapy sensitizers and explore the underlying mechanisms. We found that the alcohol withdrawal drug disulfiram (DSF) could significantly enhance the antitumor activity of DDP. JC-1 staining, propidium iodide (PI) staining, and western blotting confirmed that the combination of DSF and DDP could enhance the apoptosis of tumor cells. Subsequent RNA sequencing combined with Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis and cell biology studies such as immunofluorescence suggested an underlying mechanism: DSF makes cells more vulnerable to DNA damage by inhibiting the Fanconi anemia (FA) repair pathway, exerting a sensitizing effect to DNA damaging agents including platinum chemotherapy drugs. Thus, our study illustrated the potential mechanism of action of DSF in enhancing the antitumor effect of DDP. This might provide an effective and safe solution for combating DDP resistance in clinical treatment.


Assuntos
Feminino , Masculino , Humanos , Cisplatino/farmacologia , Dissulfiram/farmacologia , Neoplasias Testiculares/tratamento farmacológico , Anemia de Fanconi/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Apoptose , Antineoplásicos/uso terapêutico , Proliferação de Células
4.
Chinese Journal of Hepatology ; (12): 401-407, 2023.
Artigo em Chinês | WPRIM | ID: wpr-986143

RESUMO

Objective: To investigate the effect and possible mechanism of Y-box-binding protein 1 (YB-1) on sorafenib resistance in hepatoma cells. Methods: Lentiviral vectors with YB-1 overexpression and knockdown were constructed, respectively, to stimulate human hepatoma cell lines (HepG2 and Huh7) alone or in combination with sorafenib.The overexpression part of the experiment was divided into four groups: overexpression control group (Lv-NC), YB-1 overexpression group (Lv-YB-1), overexpression control combined with sorafenib resistance group (Lv-NC+sorafenib), YB-1 overexpression combined with sorafenib resistance group (Lv-YB-1 + sorafenib). The knockdown part of the experiment was also divided into four groups: knockdown control group (Lv-shNC), YB-1 knockdown group (Lv-shYB-1), knockdown control combined with sorafenib resistance group (Lv-shNC + sorafenib), YB-1 knockdown combined with sorafenib resistance group (Lv-shYB-1 + sorafenib). The occurrence of cell apoptosis was detected by TUNEL. The protein expression levels of phosphorylated (p)-ERK and ERK, key proteins in the extracellular regulatory protein kinase (ERK) signaling pathway, were detected by Western blot and quantified by ImageJ software. Subcutaneous tumorigenesis experiments were performed in nude mice. The effect of YB-1 on the efficacy of sorafenib was verified in vivo. The comparison between the two sets of data was carried out by an independent sample t-test. One-way ANOVA was used for comparisons between the three groups of data above. Results: Sorafenib had accelerated the occurrence of apoptosis in hepatoma cells, while YB-1 overexpression had inhibited cell apoptosis, and at the same time also inhibited the apoptosis-accelerating impact of sorafenib. On the contrary, YB-1 knockdown accelerated cell apoptosis and amplified the induction effect of sorafenib on apoptosis. Furthermore, sorafenib resistance had down-regulated p-ERK levels (HepG2: Lv-NC 0.685 ± 0.143, Lv-NC + sorafenib 0.315 ± 0.168, P < 0.05; Huh7: Lv-NC 0.576 ± 0.078, Lv-NC + sorafenib 0.150 ± 0.131, P < 0.01), whereas YB-1 overexpression had inhibited sorafenib resistance p-ERK reduction (HepG2: Lv-NC + sorafenib 0.315 ± 0.168, Lv-YB-1 + sorafenib 0.688 ± 0.042, P < 0.05; Huh7: Lv-NC + sorafenib 0.150 ± 0.131, Lv-YB-1 + sorafenib 0.553 ± 0.041, P < 0.05). YB-1 knockdown further increased sorafenib-induced p-ERK downregulation (HepG2: Lv-shNC + sorafenib 0.911 ± 0.252, Lv-shYB-1 + sorafenib 0.500 ± 0.201, P < 0.05; Huh7: Lv-shNC + sorafenib 0.577 ± 0.082, Lv-shYB-1 + sorafenib 0.350 ± 0.143, P < 0.05), which was further verified in naked mice (Lv-shNC + sorafenib 0.812 ± 0.279, Lv-shYB-1 + sorafenib 0.352 ± 0.109, P < 0.05). Conclusion: YB-1 mediates the occurrence of sorafenib resistance via the ERK signaling pathway in hepatoma cells.


Assuntos
Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Sorafenibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína 1 de Ligação a Y-Box/metabolismo , Carcinoma Hepatocelular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Nus
5.
Chinese Journal of Obstetrics and Gynecology ; (12): 368-377, 2023.
Artigo em Chinês | WPRIM | ID: wpr-985660

RESUMO

Objective: To investigate the mechanism of signal transducer and activator of transcription 3 (STAT3) and cancer associated fibroblasts (CAF) jointly generate chemo-resistance in epithelial-ovarian cancer and their effect on prognosis. Methods: A total of 119 patients with high-grade ovarian serous cancer who received surgery in Cancer Hospital of Chinese Academy of Medical Sciences from September 2009 to October 2017 were collected. The clinico-pathological data and follow-up data were complete. Multivariate Cox regression model was used to analyze the prognostic factors. Ovarian cancer tissue chips of patients in our hospital were prepared. EnVision two-step method immunohistochemistry was used to detect the protein expression levels of STAT3, the specific markers of CAF activation, fibroblast activating protein (FAP), and type Ⅰ collagen (COL1A1) secreted by CAF. The relationship between the expression of STAT3, FAP, COL1A1 protein and drug resistance and prognosis of ovarian cancer patients was analyzed, and the correlation between the expression of three proteins was analyzed. These results were verified through the gene expression and prognostic information of human ovarian cancer tissues collected in the GSE26712 dataset of gene expression omnibus (GEO) database. Results: (1) Multivariate Cox regression model analysis showed that chemotherapy resistance was an independent risk factor for overall survival (OS) of ovarian cancer (P<0.001). (2) The expression levels of STAT3, FAP, and COL1A1 proteins in chemotherapy resistant patients were significantly higher than those in chemotherapy sensitive patients (all P<0.05). Patients with high expression of STAT3, FAP, and COL1A1 had significantly shorter OS than those with low expression (all P<0.05). According to the human ovarian cancer GSE26712 dataset of GEO database, patients with high expression of STAT3, FAP, and COL1A1 also showed shorter OS than patients with low expression (all P<0.05), the verification results were consistent with the detection results of ovarian cancer patients in our hospital. (3) Correlation analysis showed that the protein level of STAT3 was positively correlated with FAP and COL1A1 in our hospital's ovarian cancer tissue chips (r=0.47, P<0.001; r=0.30, P=0.006), the analysis of GEO database GSE26712 dataset showed that the expression of STAT3 gene and FAP, COL1A1 gene were also significantly positively correlated (r=0.31, P<0.001; r=0.52, P<0.001). Conclusion: STAT3 and CAF could promote chemotherapy resistance of ovarian cancer and lead to poor prognosis.


Assuntos
Feminino , Humanos , Fibroblastos Associados a Câncer/patologia , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/patologia , Prognóstico , Fator de Transcrição STAT3/metabolismo , Resistencia a Medicamentos Antineoplásicos
6.
China Journal of Chinese Materia Medica ; (24): 517-524, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970488

RESUMO

In recent years, the clinical treatment of colorectal cancer(CRC) has made great progress, but chemoresistance is still one of the main reasons for reducing the survival rate of patients with colorectal cancer. Therefore, ameliorating chemotherapy resis-tance is an urgent problem to be solved. The purpose of this study was to investigate the regulatory role and related molecular mechanisms of hydroxysafflor yellow A(HSYA) in colorectal cancer cell proliferation, migration, and 5-fluorouracil(5-FU) chemoresistance. In this study, HCT116 and HT-29 cells were used as research subjects. Firstly, methyl thiazolyl tetrazolium(MTT) assay and colony formation assay were used to detect and analyze the effect of HSYA on the proliferation of CRC cells. Secondly, the effect of HSYA on the cell cycle in CRC cells was analyzed by cell cycle assay. Furthermore, the effect of HSYA on the migration of CRC cells was analyzed by wound-healing assay and Transwell assay. Based on the above, the influences of HSYA on 5-FU chemoresistance of CRC cells and related molecular mechanisms were explored and analyzed. The results showed that HSYA significantly inhibited the proliferation and migration of CRC cells, and arrested the cell cycle in G_0/G_1 phase. In addition, HSYA significantly ameliorated the chemoresistance of CRC cells to 5-FU. The results of acridine orange staining and Western blot showed that the autophagy activity of CRC cells in the HSYA and 5-FU combined treatment group was significantly higher than that in the 5-FU single drug treatment group. As compared with the 5-FU single drug treatment group, the phosphorylation levels of protein kinase B(Akt) and mammalian target of rapamycin(mTOR) in the HSYA and 5-FU combined treatment group were significantly reduced, indicating that the Akt/mTOR signaling pathway in the combined treatment group was down-regulated in CRC cells. In conclusion, HSYA may upregulate autophagy activity through the Akt/mTOR signaling pathway, thereby inhibiting the proliferation and migration of CRC cells and ameliorating the chemoresistance to 5-FU.


Assuntos
Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Fluoruracila/farmacologia , Proliferação de Células , Autofagia , Neoplasias Colorretais/tratamento farmacológico
7.
Chinese Journal of Lung Cancer ; (12): 245-256, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982154

RESUMO

BACKGROUND@#Epidermal growth factor receptor (EGFR) gene mutations are the most common driver mutations in non-small cell lung cancer (NSCLC). To prolong the survival of the patients, EGFR tyrosine kinase inhibitors (TKIs) resistance in NSCLC is a major challenge that needs to be addressed urgently, and this study focuses on investigating the mechanism of cigarette smoke (CS) induced Gefitinib resistance in NSCLC.@*METHODS@#PC-9 and A549 cells were cultured in vitro and treated with 1 µmol/L Gefitinib for 4 h and 10% cigarette smoke extract (CSE) for 48 h. Western blot was used to detect Sirtuin 3 (Sirt3) and superoxide dismutase 2 (SOD2) protein expressions; DCFH-DA probe was used to detect intracellular reactive oxygen species (ROS); CCK-8 kit was used to detect cell activity, and EdU was used to detect cell proliferation ability. Sirt3 overexpression plasmid (OV-Sirt3) was transfected in PC-9 and A549 cells and treated with 1 µmol/L Gefitinib for 4 h and 10% CSE for 48 h after N-acetylcysteine (NAC) action. The expressions of Sirt3 and SOD2 were detected by Western blot; the ROS level in the cells was detected by DCFH-DA probe, and the cell activity was detected by CCK-8.@*RESULTS@#CSE induced an increase in the 50% inhibitory concentration (IC50) of both PC-9 and A549 cells to Gefitinib (P<0.01) and enhanced the proliferation of PC-9 and A549 cells, suggesting that CS induced Gefitinib resistance in NSCLC. ROS was involved in CSE-induced Gefitinib resistance (P<0.05). CSE induced low expressions of Sirt3 and SOD2 (P<0.01), and Sirt3/SOD2 was associated with poor prognosis in lung cancer patients (P<0.05). OV-Sirt3 in PC-9 and A549 cells reversed CSE-induced Gefitinib resistance (P<0.05) and significantly reduced ROS production. NAC reversed CSE-induced Gefitinib resistance in PC-9 and A549 cells (P<0.05).@*CONCLUSIONS@#The ROS/Sirt3/SOD2 pathway is involved in CS-induced Gefitinib resistance in NSCLC.


Assuntos
Humanos , Gefitinibe/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sirtuína 3/uso terapêutico , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico , Antineoplásicos/uso terapêutico , Fumar Cigarros , Sincalida/uso terapêutico , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
8.
Journal of Experimental Hematology ; (6): 685-692, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982117

RESUMO

OBJECTIVE@#To detect the differential expressions of miR-451, ABCB1 and ABCC2 in drug-sensitive leukemia cell line K562 and drug-resistant cell line K562/A02, and explore the regulatory relationship between miR-451 and the expressions of ABCB1 and ABCC2 , and the mechanism of miR-451 involved in drug resistance in leukemia.@*METHODS@#CCK-8 assay was used to detect the drug resistance of K562/A02 and K562 cells. Quantitative Real-time PCR (qRT-PCR) was used to verify the differential expressions of miR-451 in K562 and K562/A02 cells. MiR-451 mimic and negative control (miR-NC), miR-451 inhibitor and negative control (miR-inNC) were transfected into K562 and K562/A02 cells respectively, then qRT-PCR and Western blot were used to detect the expression levels of mRNA and protein of ABCB1 and ABCC2 in K562 and K562/A02 cells and the transfected groups.@*RESULTS@#The drug resistance of K562/A02 cells to adriamycin was 177 times higher than that of its parent cell line K562. Compared with K562 cells, the expression of miR-451 in K562/A02 cells was significantly higher (P <0.001), and the mRNA and protein expression levels of ABCB1 and ABCC2 in K562/A02 cells were significantly higher than those in K562 cells (P <0.001). After transfected with miR-451 inhibitor, the expression of miR-451 was significantly down-regulated in K562/A02 cells (P <0.001), the sensitivity to chemotherapy drugs was significantly enhanced (P <0.05), and the mRNA and protein expressions of ABCB1 and ABCC2 were significantly decreased (P <0.01). After transfected with miR-451 mimic, the expression of miR-451 was significantly upregulated in K562 cells (P <0.001), and the mRNA and protein expressions of ABCB1 and ABCC2 were significantly increased (P <0.01).@*CONCLUSION@#There are significant differences in the expressions of miR-451, ABCB1 and ABCC2 between the drug-sensitive leukemia cell line K562 and drug-resistant cell line K562/A02, which suggests that miR-451 may affect the drug resistance of leukemia cells by regulating the expression of ABCB1 and ABCC2.


Assuntos
Humanos , Células K562 , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Doxorrubicina/farmacologia , MicroRNAs/genética , Leucemia/genética , RNA Mensageiro
9.
Journal of Experimental Hematology ; (6): 585-588, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982099

RESUMO

The treatment of chronic myeloid leukemia (CML) was revolutionized with the advent of the first-generation tyrosine kinase inhibitors (TKIs), but drug resistance developed during treatment, leading to the development of the second-generation (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKI. Compared with previous treatment regimens, specific TKI can significantly improve the response rate, overall survival rate and prognosis of CML. Only a few patients with BCR-ABL mutation are insensitive to the second-generation TKIs, so it is suggested to select the second-generation TKIs for patients with specific mutations. For patients with other mutations and without mutations, the second-generation TKI should be selected according to the patient's medical history, while the third-generation TKIs should be selected for mutations that are insensitive to the second-generation TKIs, such as T315I mutation that is sensitive to ponatinib. Due to different BCR-ABL mutations in patients with different sensitivity to the second and third-generation TKIs, this paper will review the latest research progress of the efficacy of the second and third-generation TKIs in CML patients with BCR-ABL mutations.


Assuntos
Humanos , Antineoplásicos/farmacologia , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
10.
Journal of Experimental Hematology ; (6): 333-337, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982063

RESUMO

OBJECTIVE@#To investigate the correlation between single-nucleotide polymorphism (SNP) of ARID5B gene and resistance to methotrexate (MTX) in children with acute lymphoblastic leukemia (ALL).@*METHODS@#A total of 144 children with ALL who were treated in General Hospital of Ningxia Medical University from January 2015 to November 2021 were enrolled and divided into MTX resistant group and non-MTX resistant group, with 72 cases in each group. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) technology was used to measure the SNP of ARID5B gene in all children and analyze its correlation with MTX resistant.@*RESULTS@#There were no significant differences in the genotype and gene frequency of rs7923074, rs10821936, rs6479778, and rs2893881 between MTX resistant group and non-MTX resistant group (P>0.05). The frequency of C/C genotype in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T/T genotype was opposite (P<0.05). The frequency of C allele in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T allele was opposite (P<0.05). Multivariate logistic regression analysis showed that ARID5B gene rs4948488 TT genotype and T allele frequency were risk factors for MTX resistant in ALL children (P<0.05).@*CONCLUSION@#The SNP of ARID5B gene is associated with MTX resistant in ALL children.


Assuntos
Criança , Humanos , Proteínas de Ligação a DNA/genética , Frequência do Gene , Genótipo , Metotrexato , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética , Resistencia a Medicamentos Antineoplásicos
11.
China Journal of Chinese Materia Medica ; (24): 2360-2367, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981312

RESUMO

This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.


Assuntos
Humanos , Feminino , Neoplasias da Mama/metabolismo , Células MCF-7 , Caspase 3/metabolismo , Caspase 9/metabolismo , Proteína Beclina-1/farmacologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células
12.
Chinese Journal of Lung Cancer ; (12): 52-58, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971179

RESUMO

As one of the most common malignant tumors, lung cancer poses a serious threat to human life and health. The platinum-based drug cisplatin (DDP) is used as the first-line treatment for lung cancer. The poor prognosis of lung cancer is mostly due to developed resistance to cisplatin, which poses a serious treatment challenge. The mechanism of cisplatin resistance is complex and unclear. Numerous studies have shown that DNA methylation plays a crucial role in the emergence of lung cancer cisplatin resistance. DNA hypermethylation results in the deactivation of numerous drug resistance genes and tumor suppressor genes through a change in chromatin conformation. Finding new therapeutic targets and indicators to predict the therapeutic effect can be aided by elucidating the complex mechanism. In order to discover novel strategies to overcome cisplatin resistance in lung cancer, this paper discusses DNA methylation-mediated cisplatin resistance and offers an overview of current demethylation procedures.
.


Assuntos
Humanos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia
13.
Journal of Experimental Hematology ; (6): 154-161, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971118

RESUMO

OBJECTIVE@#To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.@*METHODS@#Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.@*RESULTS@#The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.@*CONCLUSION@#The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.


Assuntos
Humanos , Osteogênese/genética , Medula Óssea/metabolismo , Mieloma Múltiplo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Diferenciação Celular , Adipogenia , Citocinas/metabolismo , Adipócitos/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , PPAR gama/farmacologia , Microambiente Tumoral
14.
Journal of Experimental Hematology ; (6): 38-44, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971099

RESUMO

OBJECTIVE@#To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.@*METHODS@#HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.@*RESULTS@#CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.@*CONCLUSION@#Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.


Assuntos
Humanos , Atorvastatina/farmacologia , PTEN Fosfo-Hidrolase/farmacologia , Sincalida/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Serina-Treonina Quinases TOR/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Doxorrubicina/farmacologia , Apoptose , RNA Interferente Pequeno/farmacologia , Glicólise , Glucose/uso terapêutico , Proliferação de Células
15.
Journal of Experimental Hematology ; (6): 8-16, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971095

RESUMO

OBJECTIVE@#To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML).@*METHODS@#The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored.@*RESULTS@#The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05).@*CONCLUSION@#The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.


Assuntos
Humanos , Antineoplásicos/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Transdução de Sinais
16.
Journal of Experimental Hematology ; (6): 1-7, 2023.
Artigo em Chinês | WPRIM | ID: wpr-971094

RESUMO

OBJECTIVE@#To investigate the effect of Cyr61 on imatinib (IM) resistance in chronic myeloid leukemia (CML) and its mechanism.@*METHODS@#Cyr61 level in cell culture supernatant was determined by enzyme-linked immunosorbent assay. The expression of Cyr61 and Bcl-xL were measured by real-time PCR and Western blot. Cell apoptosis was analyzed using an Annexin V-APC Kit. Expression of signal pathways related proteins was determined by Western blot.@*RESULTS@#The level of Cyr61 obviously increased in K562G cells (IM resistance to CML cell line K562). Down-regulating the expression of Cyr61 decreased the resistance of K562G cells to IM and promoted IM induced apoptosis. In CML mouse model, down-regulating the expression of Cyr61 could increase the sensitivity of K562G cells to IM. The mechanism studies showed that Cyr61 mediated IM resistance in CML cells was related to the regulation of ERK1/2 pathways and apoptosis related molecule Bcl-xL by Cyr61.@*CONCLUSION@#Cyr61 plays an important role in promoting IM resistance of CML cells. Targeting Cyr61 or its related effectors pathways may be one of the ways to overcome IM resistance of CML cells.


Assuntos
Animais , Humanos , Camundongos , Apoptose , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transdução de Sinais
17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 352-363, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929266

RESUMO

Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.


Assuntos
Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Apoptose , Catecóis , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Neoplasias Hepáticas/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
Chinese Journal of Lung Cancer ; (12): 183-192, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928796

RESUMO

Lung cancer is the sixth leading cause of death worldwide and one of the leading cause of death from malignant tumors. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Epidermal growth factor receptor (EGFR) gene mutation is a common mutation in NSCLC. For advanced NSCLC patients with EGFR mutations, EGFR-tyrosine kinase inhibitors (EGFR-TKIs), such as Gefitinib, Afatinib, Oxitinib and other targeted therapies have become the first-line treatment recommended by many guidelines, but many patients develop acquired drug resistance after about 1 year of medication. Patients with drug resistance will have earlier disease progression than patients without drug resistance, which has an important impact on the prognosis of patients. At present, the main treatment for patients with acquired resistance is new target inhibition for resistant mutation. For example, if patients with T790M mutation are resistant to the first or second generation drugs such as Gefitinb and Afatinib, they can be treated with the third generation drugs (Osimertinib or Almonertinib), which can delay the progression of the disease. Therefore, the study of drug resistance mechanism and treatment of drug resistance patients are essential. This paper mainly reviews targeted therapy and drug resistance mechanism of EGFR-mutant NSCLC patients, in order to provide reference for clinical application of EGFR-TKIs.
.


Assuntos
Humanos , Acrilamidas , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Genes erbB-1 , Indóis , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas
19.
Chinese Journal of Lung Cancer ; (12): 111-117, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928787

RESUMO

Lung cancer remains the leading cause of cancer-related death world-wide. Therapy resistance and relapse are considered major reasons contributing to the poor survival rates of lung cancer. Accumulated evidences have demonstrated that a small subpopulation of stem-like cells existed within lung cancer tissues and cell lines, possessing the abilities of self-renewal, multipotent differentiation and unlimited proliferation. These lung cancer stem-like cells (LCSCs) can generate tumors with high effeciency in vivo, survive cytotoxic therapies, and eventually lead to therapy resistance and recurrence. In this review, we would like to present recent knowledges on LCSCs, including the origins where they come from, the molecular features to identify them, and key mechanisms for them to survive and develop resistance, in order to provide a better view for targeting them in future clinic.
.


Assuntos
Humanos , Linhagem Celular Tumoral , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/patologia
20.
Journal of Experimental Hematology ; (6): 418-424, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928730

RESUMO

OBJECTIVE@#To investigate the mechanism of miR-155 promoting drug resistance of children B-ALL to Ara-C by regulating Wnt/β-Catenin signaling pathway.@*METHODS@#The expression of miR-155 in bone marrow tissue and cell line of B-ALL was detected by PCR. The chemotherapy resistant strain REH/ Ara-C was constructed by using REH cells. REH/ Ara-C cells were transfected with miR-155 inhibitor. The proliferation of REH/Ara-C cells was detected by EdU. The apoptosis of REH/ Ara-C cells was detected by flow cytometry. The drug resistance of REH/Ara-C cells were analyzed by CCK-8 method and colony formation assay. The expression of Wnt/β-Catenin signaling pathway related proteins were determined by Western blot. MiR-155 inhibitor and Wnt activator agonist were used to transfect REH/Ara-C cells, and their effects on cell proliferation, apoptosis and drug resistance were determined.@*RESULTS@#Compared with normal tissues and cells, the expression level of miR-155 in B-ALL bone marrow tissue/cell line was increased (P<0.05); Compared with drug sensitive B-ALL tissues/cell lines, the expression level of miR-155 in drug resistant B-ALL tissues and cell lines was increased (P<0.05); Inhibition of miR-155 expression decreased the proliferation of REH/Ara-C cells (P<0.05), promoted apoptosis (P<0.05), enhanced the cytotoxicity of Ara-C (P<0.05), and inhibited Wnt/β-Catenin signaling pathway related protein and MDR1 gene expression (P<0.05), which could be reversed by activating Wnt expression (P<0.05).@*CONCLUSION@#The expression of miR-155 is up-regulated in bone marrow of children with B-ALL, which may be related to the activation of Wnt/β-Catenin signaling pathway promotes the proliferation of B-ALL cells and inhibits apoptosis, which leads to chemotherapy resistance.


Assuntos
Criança , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Citarabina , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Via de Sinalização Wnt , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA